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ABSTRACT 

This report describes a two-stage isolated-word recognition system using a Hidden 
Markov Model (HMM) recognizer in the first stage, and a statistical discriminator in 
the second stage. The second-stage system performs pairwise discriminations between 
the top few candidate word models when no clear decision is made from the first 
stage. Likelihood-ratio comparisons and a new technique called "sifting" are used to 
focus attention on those features that best differentiate word pairs. 

This system alleviates four fundamental problems which are found with most 
conventional speech recognition systems. These problems include: (I) the effects of 
limited training data are not explicitly taken into account, (2) the correlation between 
adjacent observation frames is incorrectly modeled, (3) durations of acoustic events 
are poorly modeled, and (4) features which might be important in discriminating only 
among specific word pairs or sets of words are not easily incorporated into the system 
without degrading overall performance. The system was tested on a 35 word/10,000 
token stressed-speech isolated-word data base created at Lincoln Laboratory. The 
adding of the second-stage discriminating system reduced the error rate by more than 
a factor of 2. The overall error rate fell from 7.7 percent with only the HMM system 
to 3.5 percent with both the HMM system and the discriminator. 
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A TWO-STAGE ISOLATED-WORD RECOGNITION SYSTEM 
USING DISCRIMINANT ANALYSIS 

1.    INTRODUCTION 

1.1    AUTOMATIC SPEECH RECOGNITION 

Machine recognition of human speech has proved to be an elusive goal sought after for 
many years. Many approaches toward this goal have been taken. The prevailing approaches 
reduce the problem to some form of template or pattern matching.1-2 The difficulty in forming 
templates and developing models for continuous speech is considerably greater than the difficulty- 
encountered when dealing with just isolated words. Because of this fact, a vast majority of work 
in this field has addressed the problem of recognizing isolated words. Dynamic Time Warping 
(DTW) and Hidden Markov Modeling (HMM) are representative examples of the approaches 
scientists have taken toward speech recognition. 

1.1.1    Dynamic Time Warping 

Dynamic Time Warping is a process that time aligns an input token as it is compared to a 
reference word template. This is done by effectively squeezing or stretching parts of an input 
word to best match the durations of individual parts of the reference words. Consider Figure 1-1. 
Waveform (A) is some input, and (B) is some reference template. 

Intuitively, similarities are seen in the waveforms. However, if a comparison scheme is used 
where the observation of the input at time t0 is compared directly with the reference template at 
time t0, the similarities in the two waveforms will not be effectively identified. 

Consider another comparison scheme, as presented in Figure 1-2. If the scheme is now to 
compare the input at time t0 with the reference template at time fCto), the obvious similarities in 
the waveforms will be effectively identified. The matching problem then reduces to finding a 
warping function f(t0). given an input token and a reference template, so that the overall compar- 
ison is optimized. This will result in a much more robust pattern-matching scheme. 

This describes the essential motivation for DTW. When applying DTW to speech recogni- 
tion, the inputs and references are usually not observed as continuous waveforms, but rather as a 
discrete series of observation vectors, sampled at an appropriate frame interval. These vectors can 
consist of Linear Predictive Coding coefficients, cepstral coefficients, or a variety of other sets of 
speech parameters. Given an input observation sequence and a stored reference sequence, 
dynamic programming techniques are used to calculate the optimal f(t) or time warping path to 
optimize the comparison. 
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Figure l-l.    Unaligned input and reference lemplare. 
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Figure 1-2.   f(t) indicates optimal warping path between the input waveform (B) and the reference template (A). 



1.1.2    Hidden Markov Modeling 

Hidden Markov Modeling is another speech recognition technique that has become increas- 
ingly popular in the last few years.3"7 HMM will be discussed in more detail in the sections to 
follow. The HMM technique assumes that an underlying Markov process generates the speech 
signal. The states of this model can generally be thought of as the acoustic events in a given 
word. Models are made to characterize the probability distributions of observation vectors for 
each state. The term "Hidden" arises from the fact that only these vectors, and not the underly- 
ing states, can be observed. These conditional probability distributions are of the form 

Pr(0 a) = Pr(observing vector O in state a)        . (1.1) 

As an input sequence comes in for some unknown word in the recognition process, each 
input observation vector is assigned to a node (or state in the Markov process) in a way which 
optimizes the alignment of input vectors with the HMM states. The overall score is computed as 
the product of T probability scores, where T is the number of observations in the input. Each of 
these scores represents the probability of a single observation vector, given its assigned state. 

Given models such as this for all the vocabulary words, probability scores are computed that 
reflect the likelihood of a word model, given a set of observations. The recognizer then chooses 
the model with the highest likelihood score as the selected word. 

1.2    PROBLEMS WITH RECOGNITION SYSTEMS 

One key problem with DTW and HMM recognition systems is that scoring is done on a 
per-observation basis, where equal weighting is given to each input observation vector. Scoring of 
this nature assumes an underlying statistical independence of observation inputs. This is a poor 
assumption because observations corresponding to a vowel in steady state, for example, will be 
highly correlated. One technique that eliminates the assumption of statistical independence is to 
score on a per-HMM-node basis instead of a per-frame basis. This technique is based on the idea 
that each HMM node represents a unique acoustic event which is independent of adjacent events. 

A second problem with many recognition systems is that the duration of acoustic events are 
modeled poorly. DTW time aligns the input to a reference template in a manner which sup- 
presses the differences in durations of acoustic events. Thus, the durational characteristic is not 
used very effectively. Most HMM recognizers model node residency times as a decaying exponen- 
tial. This implies that short acoustic events will tend to produce better scores than long acoustic 
events. A better model for duration as a statistic and for its use in a recognition system will be 
proposed, based on the actual distributions of these node residency times estimated during 
training. 

A third problem with many recognition systems is that the effects of limited training data on 
estimates of recognition system model parameters are often not effectively taken into account. 
For example, estimates of the variances associated with the probability distribution in Equa- 
tion (1.1) can be very inaccurate with small training sets. However, the means of these distribu- 
tions can be estimated much more reliably. Reliance on inaccurately estimated parameters in a 



recognition system can cause significant performance degradation. The use of grand variance 
estimates5-8 and T-testing, to eliminate poor statistics from scoring, will be presented as a tech- 
nique for solving this problem. 

A fourth problem with many recognition systems is that performance tends to degrade when 
special-feature parameters are added to aid in discriminating a few important confusions.9 The 
addition of special features in many systems degrades the scoring for most cases except the few 
where the feature was meant to be effective. The T-testing technique, noted above, allows features 
that do not contribute robustly to the scoring to be automatically omitted from the decision pro- 
cess. This enables special features to be included in such a way that they can resolve important 
confusions without creating significant additional confusions. 

1.3    THE TWO-STAGE RECOGNIZER 

The architecture for the new system includes two stages. The baseline or first-stage system 
classifies the input as one of a small subset of possible words. The second stage makes a decision 
by discriminating between the more limited set of candidates. 

The two-stage recognition scenario is as follows. An unknown token is passed to the baseline 
recognizer. The recognizer performs some form of template matching between the input token 
and the models stored for each word in the vocabulary. Distance scores are computed, reflecting 
the match between the input token and each of the respective word models. Assume in this par- 
ticular case the distance scores produce no clear winner because the scores for the top few word 
models are close. The baseline system must either reject the input token as unrecognized (not a 
wise decision if the distance scores are good), or just pick the model with the best score. Instead, 
the discriminant system will, at this point, deduce that it must choose between these close candi- 
dates, then look at those parts of the input token, both spectrally and temporally, that might bet- 
ter differentiate between the candidates. 

A realistic example of how this system could be effective is with the "go/no" confusion. 
Many recognizers consistently confuse these words. A baseline system, as described above, will 
give strong scores for both "go" and "no," given the input is one of those words. The scores will 
be good since the longer part of the word (the long vowel) will match closely with both word 
models. Suppose the input token was "go" but the vowel section for this word matched closer 
with the vowel section of the "no" word model, the recognizer might give the "no" word a better 
score as a result of the vowel dominating the duration of the word. 

The discriminant system will not weight the contribution from the long vowel significantly. 
This seems reasonable since it corresponds to the same phonetic event for both words. It will, 
however, weight the beginning of the word significantly. From training, statistics will suggest that 
a greater difference can be found with this part of the two candidate words. In this way the dis- 
criminant system will focus attention toward the section of the word that will best enable 
discrimination. 



1.4 THE ROBUSTNESS ISSUE IN SPEECH RECOGNITION 

One of the challenges of this system is to maintain high accuracy recognition in the presence 
of high acoustic noise and severe psychological and physical stress on the speaker.10-" To 
address this problem, the system presented includes the following features: (a) an improved model 
for the duration of acoustic events, (b) an implementation which allows confusion-specific fea- 
tures to be added into the recognition algorithm without degrading overall performance, and (c) a 
recognition algorithm which inherently focuses itself to parts of the input which most effectively 
allow discrimination between recognized words. 

Data bases have been developed at Texas Instruments and Lincoln Laboratory to facilitate 
the development of recognition algorithms in this scenario. These data bases include speech from 
several speakers produced during a difficult workload task, when talkers are in a noise back- 
ground, and when talkers use several different talking styles. 

1.5 SUMMARY OF THIS REPORT 

This report describes the design and implementation of such a discriminant system. Section 2 
describes the baseline system that was used for all experiments. A more detailed description of 
HMM theory is also presented. Section 3 describes the Lincoln stressed-speech data base that 
was used for all experiments. It also describes the results of some preliminary testing done with 
this data base that indicated the potential for a two-stage discriminant system. Section 4 describes 
the basic scenario for using discriminant analysis with speech, the processing needed to imple- 
ment such a system, and various schemes for attaining improved results from such a system. Sec- 
tion 5 discusses the experiments that were performed. It describes various modifications to the 
system presented in Section 4, and the results that were achieved from each of these experiments. 
Section 6 discusses further proposed experiments and the feasibility of a discriminant system as 
part of a large vocabulary recognizer. Conclusions and a Summary are provided in Section 7. 



2.    THE BASELINE SYSTEM 

The system that was used as the first-stage recognizer is a maximum-likelihood-based Hidden 
Markov Model recognition system with continuous observations. It is described in Reference 5. 
To facilitate an understanding of this system, a brief description of Hidden Markov Models will 
be given. 

In a typical Markov process a discrete symbol is observed corresponding directly to the state 
of that process. A state transition then occurs. These transitions are modeled by a stochastic state 
transition matrix that describes the probability of jumping to any state, given the previous state. 
Let A be the transition matrix for some model. 

ajj = Pr(state at time t + 1 is j/state at time t is i)        . (2.1) 

Given several Markov models (state transition matrices) and an observation sequence, we 
can find the model that produces the given observation sequence with the highest probability. 

Example: 

Assume an observation sequence O = A, C. D, A, B, B, A, C where A, B, C, and D are 
Markov states. Assume two candidate Markov models represented by their transition matrices P 
and Q where Px v is the state transition probability of going from state x to state y under model 
P. The probabilities of observing the sequence, given these models, are as follows: 

Pr(0/model P) = (PajC)   (Pc<d)  (Pd.a)  (Pa,b)  (Pbib) (Pbia)  (Pa>c) (2.2) 

Pr(0/modelQ) = (Qa,c)   (Qc.d)   (Qd.a)   (Qa.b)   (Qb,b)  (Qb,a)  (Qa,c)        • (2-3) 

If Pr(0 model P) > Pr(0/model Q), it is said that model P is the more likely candidate 
because that model has a higher probability of producing the observation O than does model Q. 

The key difference between Markov processes and Hidden Markov processes is that the sym- 
bol emitted from the Markov process is a deterministic function of the state the process is in; 
whereas, in the Hidden Markov process the symbol emitted is the result of some probabilistic 
function of the state.4'5'8'12 

Pr(s/i) = Pr(emitting symbol s/the state is i)        . (2.4) 

The specification of the Hidden Markov Model must include both the transition matrix (2.3) 
and the conditional distributions (2.4). The problem of calculating Pr(0/model) is now more 
complicated. However, with some assumptions as to the starting state and by some restrictions 
on the allowable state transition probabilities, this problem can be solved in a reasonably 
straightforward manner. 

If the transition matrix is unrestricted, the probability of going from any state to another 
can be some finite probability, as illustrated in Figure 2-1. If we think of the states as being part 
of a sequential process where one cannot return to a previously visited state, the transition net- 
work is simplified as shown in Figure 2-2. If we further restrict the process by not allowing any 
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Figure 2-1.    Allowable transition paths of an unconstrained Markov model. 
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Figure 2-2.    Allowable transition paths of a left-to-right 
Markov model with jump states. 
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state to be skipped, the network is even further simplified as in Figure 2-3. The scheme in Fig- 
ure 2-3 shows the restrictions that have been used for the application of HMMs to speech in the 
baseline system. With this restriction the process of finding the most likely state sequence, given 
a model and an observation set, becomes a segmentation procedure where the number of obser- 
vation frames assigned to each node are the parameters to be determined. 

Figure 2-3.    Allowable transitions for a left-to-right 
Markov model without jump states. 

In applying HMM techniques to speech, we think of speech as a doubly stochastic process 
where the states correspond roughly to acoustic-phonetic events (or to configurations of the 
human vocal apparatus). We cannot directly observe these states (hence, we call them hidden), 
but instead, we observe some parameters of the speech waveform such as LPC coefficients, cep- 
stral coefficients, or filter bank outputs. These parameters, in turn, are effectively modeled as 
random variables whose probability distributions depend on the current state. 

To train an HMM recognizer it is necessary to create a model for each word from N train- 
ing utterances of each word. Each utterance is represented as a sequence of observations. We 
wish to find that model which has the highest likelihood of producing those sequences of obser- 
vations. An iterative training procedure, known as forward-backward training,3'12'13 is used. 
Initial estimates of the model are made, i.e., the state transition matrix and state observation dis- 
tributions. Then the probability of the observation sequences are then calculated given the initial 
model. The parameters are then re-estimated in such a way that the probability score increases. 
This is done repeatedly until the increase in the probability score is below some threshold value. 

During recognition each word model is used to determine the most likely segmentation (or 
node assignments) for each of the observations, and to calculate the likelihood of the observa- 
tions for this optimal state assignment given the word model. The word that corresponds to the 
model producing the highest likelihood score is then chosen as the recognized word. This tech- 
nique is known as Viterbi decoding.3'12'13 

There are many complications in the design and implementation of such systems. For exam- 
ple, no theory exists to determine the exact form of the model to use, and it is not clear that the 
model shown in Figure 2-3 is adequate. In addition, the best number of nodes to be used in a 
model cannot be determined theoretically. Also, the forward-backward training algorithm can 



only guarantee a locally optimal and not a globally optimal set of parameters for the word 
models it generates. 

However, good results have been obtained with simple HMM structures of the form indi- 
cated in Figure 2-3, and the system used here as the first-stage recognizer was of this form. An 
11-node model with variance limiting was used for all words. Variance limiting constrains the 
range of variance estimates used in the word models, and is further described in Reference 8. 
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3.    THE LINCOLN STRESSED-SPEECH DATA BASE 

3.1    DESCRIPTION 

The following is a description of the data base used for all experiments with the discriminant 
system. It includes speech of subjects under workload stress, as well as speech of subjects in- 
structed to speak in a variety of styles designed to produce the kinds of acoustic variations typi- 
cal of real physical and psychological stress conditions. The data base was recorded at Lincoln 
Laboratory in a quiet room and stored on Scotch 3M-208 audio recording tape. A total of nine 
speakers were recorded. Each speaker went through three, approximately one-hour recording ses- 
sions. Approximately one week elapsed between the first and second sessions, and approximately 
one month between the second and third. The first two sessions comprised the style portion of 
the data base, and the third session comprised the stress portion. 

The vocabulary consisted of 35 aircraft words with many highly confusable subsets. Words 
were selected from a set of 105 used in a vocabulary created by the Texas Instruments Speech 
Research Group.11 The vocabulary was; break, change, degree, destination, east, eight, eighty. 
enter, fifty, fix, freeze, gain, go, hello, help, histogram, hot, mark, nav, no, oh, on, out, point, 
six, south, stand, steer, strafe, ten, thirty, three, white, wide, zero. 

During the first and second recording sessions, the subject began by saying each word in the 
vocabulary five times in succession. The subject was then instructed to go through the entire 
vocabulary eight more times. Each of these times the subject was instructed to speak in a specific 
manner as listed below. 

slow The speaker was told to say each word slowly. 

normal The speaker was told to say each word normally. 

fast The speaker was told to say each word fast. 

soft The speaker was told to speak softly. 

question To achieve a rising pitch throughout the word, the speaker 
was instructed to say each word with a questioning intonation. 

loud The speaker was told to say each word loudly. 

clear The speaker was told to say each word clearly and distinctly. 

angry The speaker was instructed to speak angrily. 

The third session began in a similar way. The subject repeated each word in the vocabulary 
twice, in a normal manner, as opposed to five times in the other sessions. The subject was then 
evaluated on a critical tracking workload task that induces stress.14 In this task the subject was 
seated in front of a computer terminal. The subject moves a large triangle on the screen by rotat- 
ing a knob. The object is to rotate the knob so that the triangle stays on the screen, while it 
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becomes increasingly difficult to keep the object on the screen. From this initial performance, the 
maximum difficulty level at which the subject can still maintain control of the task was 
estimated. 

While performing the task at a difficulty level set at 50 percent of maximum, the subject was 
asked to repeat the words in the vocabulary. This test was performed twice, and then two more 
times at a difficulty of 70 percent of maximum. These conditions are referred to as co50, and 
co70. Finally, the speaker was asked to go through the vocabulary while listening to background 
noise through headphones at a level of 90 dB spl. This condition is referred to as the Lombard 
condition,15 and is known to produce substantial acoustic phonetic changes.5 

All the recorded data were digitized using the SPIRE system,16 running on a Symbolics 3600 
Lisp Machine. All word tokens were low-pass-filtered at 8 kHz before digitization to prevent ali- 
asing. The speech was sampled at 16 kHz using 16-bit samples. 

Storage requirements for the data base were very large. For each speaker there were 1190 
tokens with an average duration of approximately one-second each. This required 35 Mbytes per 
speaker, or over 315 Mbytes for the entire 10,710 token data base. 

To enable a more efficient environment for running recognition experiments, the data base 
was also stored in a compressed form. Taking 10 ms as a speech frame, 17 cepstral coefficients 
were computed for each frame. Two bytes were used to store each coefficient so that an average- 
length word would require 3400 bytes of storage. The entire data base in this form resides on 
34 Mbytes of disk space. 

3.2    PRELIMINARY TESTING 

3.2.1    The Dragon System 

Before any of the Lincoln stressed-speech data base was digitized, a recognition experiment 
was performed using a Dragon recognition system (software-based) installed on an IBM Personal 
Computer.17 The rejection threshold of this system was set to reduce the number of rejections to 
the point when the system could be effectively characterized in terms of its substitution error rate 
only. The purpose of this experiment was to provide a comparison of the baseline system to a 
good commercially available recognizer. 

The Dragon system was first trained using the training utterances of the first session (the 
five normal utterances that begin the session). The system was tested using all utterances from 
the remaining part of the first session. This amounted to 280 words for each speaker. The 
Dragon system was retrained in a similar fashion with the training utterances from the second 
session. The remaining utterances from the second session were then tested. Finally, all the utter- 
ances from the third session were tested with the templates generated from the second session. 

This testing was unique in that the data base was one consisting primarily of stressed speech. 
This also gave a valuable initial insight about how a state-of-the-art commercial recognizer, 
trained with normal speech, would behave with such a data base. The solid line of Figure 3-1 
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Figure 3-1. Comparison of the Dragon and baseline systems. The solid line shows error rate for the Dragon 
system, the dashed line shows error rate for the baseline system using normal training, and the doited line shows 
error rate for the baseline system using muhistyle training. 

describes the resulting error rates of this experiment. The horizontal axis spans the eight speaking 
styles, the easier (co50) and more difficult (co70) workload stress conditions, the Lombard condi- 
tion (Lomb), and the remaining tokens not used during training. It includes all the styles and 
conditions found in the data base. 

The error rate of the Dragon recognizer, when trained on normal speech and tested on the 
stressed-speech data base, is much higher than could realistically be tolerated in any real applica- 
tion. This reveals a serious problem with recognition of stressed speech. The overall average error 
rate on the entire data base was 28.5 percent. The error rates were lowest for the normal and 
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question conditions, and highest for the slow and angry conditions. It may be speculated that the 
question and normal conditions are the conditions acoustically closest to the training condition, 
and the slow and angry conditions are the conditions most acoustically different from the 
training. 

After examining the frequency of specific confusions, nine subvocabularies were made. The 
size of these vocabularies ranged from two to six words. The subvocabularies were as follows: 

subvocabulary 1 degree, three, thirty, fifty, freeze 

subvocabulary 2 eight, eighty, gain, change 

subvocabulary 3 east, fix, six 

subvocabulary 4 go, hello, no, oh 

subvocabulary 5 enter, ten 

subvocabulary 6 white, wide, point, break, strafe 

subvocabulary 7 help, out, south, hot, zero, on 

subvocabulary 8 steer, stand, destin 

subvocabulary 9 mark, nav, histog 

Most confusions were within, but not between, these groups. While the groupings only 
account for 5.48 percent of all possible pairwise confusions, the percent of all errors that fell into 
these groups was 51.35 percent. 

Two conclusions are drawn from this experiment. The first conclusion is that, trained in this 
manner, the performance of the Dragon system was inadequate. More sophisticated training and 
recognition algorithms must be used to compensate for stressed speech. The second conclusion is 
drawn from the observation of the errors falling into subvocabularies quite frequently. This is an 
advantageous condition for the performance of two-stage discrimination. Given this observation, 
the use of a two-stage system appeared viable. 

3.2.2    The HMM Baseline System 

After completely digitizing the data base, a similar experiment was conducted using the 
HMM baseline recognition system. One training set of five word tokens was used for each 
speaker to create one word model to test all other tokens. Two training techniques were used. 
First, five tokens of normal speech were used. Then, multistyle training8 was used where the five 
tokens, all taken from the first session, consisted of one token spoken as part of the initial train- 
ing set, one token spoken fast, one token spoken with a questioning intonation, one token 
spoken loudly, and one token spoken clearly. The system used was the top performing HMM 
system at that time on the Lincoln data base. A number of experiments conducted at Lincoln5-8 

have shown multistyle training to be very effective in improving recognizer performance. 
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Results from testing the HMM recognizer with multistyle training (one token of normal, 
fast, question, loud, and clear speech) and normal training (five normal tokens) are presented in 
Figure 3-1, along with results from the Dragon system. The dashed line with crosses shows the 
error rates for the baseline system using normal training. The overall error rate of this system is 
18.9 percent. It performs better than the Dragon system for all conditions, excluding angry and 
loud. Results of multistyle training are presented by the dashed line with squares of Figure 3-1. 
The overall error rate fell from 18.9 percent with normal training to 7.7 percent with multistyle 
training. This illustrates the advantage of multistyle training, and the basis for selecting it for use 
in these experiments. 

It should be noted that recognition performance of the Dragon system with multistyle train- 
ing was not tested. It would be expected that multistyle training would also improve performance 
for the Dragon system. The objective here, however, was not to evaluate any particular commer- 
cial system but to establish a high-performance baseline HMM system as a basis for the discrimi- 
nant analysis work. The results in Figure 3-1 are intended to establish that the Lincoln HMM 
system with multistyle training provides such a baseline. 

As mentioned above, a scheme was needed to determine under which circumstances a 
second-stage analysis would be used. If a two-stage procedure is always used, a risk would be 
run in degrading the performance of an already tested and effective first-stage system. By never 
using the second stage, the problems mentioned earlier with the baseline system would remain. A 
rule was therefore sought that would only use the second stage when the probability of the first 
stage producing an error was high. A discussion of the rules used in the experiments performed 
is found in the next section. 

A statistic that proves to be crucial in determining an upper limit on the performance of a 
two-stage system is the percent of all trials that result in the correct word being in the top few 
candidates. If the correct word is not among the top few candidates in a large percentage of 
cases where the baseline system was incorrect, then the discrimination system can offer no 
improvement. If the correct word is always among the top few candidates, the discrimination sys- 
tem has the potential to correct all errors. The upper limit on the performance of a two-stage 
system is the percent of all trials that includes the correct choice in the top N selections, where N 
is the number of candidates the second stage uses. Table 3-1 demonstrates that by discriminating 
among just the top two candidates, the error rate could potentially be halved. By performing a 
three-way discrimination the overall error rate could be reduced to as little as 1.6 percent. 
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TABLE 3-1 

Percent Errors in Top N Selections 

Speaker 1 2 3 

gi 18.7 8.4 4.9 
g2 5.5 2.0 1.3 
g3 7.1 2.8 1.8 
nl 4.9 1.1 0.5 
n2 9.4 47 2.9 
n3 4.8 0.6 0.1 
bl 8.6 3.0 1.6 
b2 6.1 2.2 0.6 
b3 3.3 1.4 0.8 

Total 7.7 2.9 1.6 

Percent errors for each speaker out of 1015 tokens. 
Error rates are for the top one, two, and three 
candidates from the baseline system. 
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4.    DISCRIMINANT ANALYSIS 

Baseline training provides word models for each word in the vocabulary based on five train- 
ing utterances. These models are obtained with the use of forward-backward training described 
earlier. This training technique repeatedly passes the training utterances for a given word through 
that word's model using the forward-backward algorithm. Training required for the discriminant 
system involves passing all training utterances through all word models using the Viterbi decod- 
ing scheme. 

Suppose word models A and B produced essentially equal likelihood scores from the baseline 
system for a given input sequence. In other words, the input token's behavior, when passed 
through model A, matched closely to the way A's training set behaved when passed through the 
same model. This match was essentially equal to the match between the way the input token 
behaved when passed through model B, and the way B's training set behaved when passed 
through model B. 

With the existing baseline system, a decision must be made at this point, based on limited 
information obtained by passing training tokens through their own word models. With the dis- 
criminant system more information is available. With the discriminant training data the key dif- 
ferences in the words A and B are brought out. This is done using the statistics obtained from 
passing training instances of both of these words through both word models. This is illustrated 
by the following example. 

Define an observation sequence for an unknown word as O. 

Q ={Q(1), 0(2), 0(3),...,0(n)} (4.1) 

There are n 10-ms time frames in the unknown observation sequence. The tth observation 
frame consists of 16 cepstral coefficients. 

0(t)={01(t)J02(t)>..M016(t)l (4.2) 

When decoded on a word model using Viterbi decoding, the observation sequence is seg- 
mented by observing the backtrace which assigns each observation frame to a state. The optimal 
state transitions that were determined during decoding and used for segmentation are then 
recorded. (Many applications of this type of decoding make no use of this backtrace, since just 
the optimal score that results is of interest.) Each segment is assigned to a node. For instance, let 
us assume there are four nodes in a particular word model. 

node 1 {0(b))....0(e1)} 

node 2 {0(b2)....0(e2)]- 

node 3 {Q(b3)....0(e3)} 

node 4 {0(b4)....0(e4)} 

Observations bj through e, are assigned to node 1. Observations b2 through ^ are assigned 
to node 2, etc. Frames Cj and b1+1 will always correspond to adjacent observations. As part of the 
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discriminant training, all the training utterances are decoded this way. Statistics are formed for 
all training tokens of every word using each word model, word, node, and parameter. Parameters 
used included 16 cepstral coefficients and relative energy, and two node duration parameters. 
Also used were 17 differential feature parameters, corresponding to the node-to-node difference in 
mean value for the 16 cepstral parameters and energy. The following describes how these statis- 
tics are generated. 

Statistics for word B being tested with word model A are recorded. These statistics are 
generated from the Viterbi segmentations of the word B training utterances when tested by model 
A. Each segmentation is a set of N mean model-parameter vectors, where N is the number of 
nodes in the model. 

The means and variances of each model-parameter vector are estimated as an independent 
Gaussian random variable for each word, word model, and node. Given a training set of observa- 
tions, statistics are obtained for that set with any word model. Let S; be the mean observation 
vector for node i. 

Si = —TTTT   S  2(k) (4-3) b,+ i 
k=b; 

OCbj) is the first observation vector in the segment, and 0(ei) is the last observation in the 
segment. For this given input token, a mean model-parameter vector for each node in the model 
is obtained. 

Therefore, if we are given five utterances to use for training, a mean observation vector can 
be obtained for the input word, the model, and the node number of the model. For each training 
utterance and word model, a set of Sj's are obtained. Let Siq be the mean observation vector for 
the qth training utterance in node i. The mean observation vector, given these utterances, is just 
the simple mean of these utterance mean vectors for each node. 

1    5 

S; for five training utteranes =— V  Slc. (4.4) 
q=l 

Similarly, from these five samples the variances are estimated. These statistics are stored as 
four-dimensional arrays whose indices are word model, word, node, and model-parameter. 

Assume an observation sequence O. After training and testing on a baseline system it is 
determined that no decision can be made from the baseline alone, although the decision should 
clearly be either word A or word B. The discriminant system must be used to decide between 
these two candidates. 

Word model A is first studied. A statistical description of an utterance of word A being 
passed through model A is used. Also, a similar description of an utterance of word B being 
passed through model A is used. This statistical description comes from passing the training tok- 
ens of word A through model A, and the training tokens of word B through model A. For 



instance, Figure 4-1 below examines node i of model A when the utterance is A and when the 
utterance is B. For simplicity, it is assumed that only three model parameters comprise the 
vector. 

Figure 4-1 illustrates the contribution to the final likelihood ratio of a single node. For the 
above example the distribution for each of the model-parameters is given. There exists a set of 
distributions for the case of the input word being A and a set for the input word being B. The 
assumption made is that the segmentation has arisen from model A. By plotting the observation 
vectors for the input word in node i against these distributions, the likelihood ratios between 

NODE k OF MODEL Ma 

o 
00 

P(0/B,Ma) 

PARAMETER  0 

P(0/B,Ma) 

PARAMETER   1 

P(0/B,Ma) 

PARAMETER  2 

P(0/A,Ma) 

P(0/A,Ma) 

Figure 4-1.    Illustration of likelihood-ratio scoring: parameter 0 appears to be the only clear discriminator 
between A and B. 

words for each model-parameter can be found for that node. It should be noted that in 
Figure 4-1 only parameter 0 can be thought as a good discriminator. By looking at the likelihood 
ratios from all of these parameters it is clear that parameter 0 will have the strongest effect. The 
classifier focuses attention toward that parameter which is the best discriminator. This is a crucial 
feature for a discriminator to perform well on words that are acoustically similar. 

Given that we have two candidate choices (A and B), an unknown observation sequence O. 
and the two respective word models used for segmentation Ma and Mb, we wish to calculate two 
statistics. 

La = log 

Lb = log 

P(Q A,Ma) 

P(Q/B,Ma) 

P(Q/B,Mb) 

P(g A,Mb) 

(4.5) 

(4.6) 
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If La and Lb are of opposite sign, then the two scores both favor the same word. Each of 
these statistics is the sum of the individual contributions from each node. Let O (in node i) be 
the set of observation vectors O (bj) through O (ej), or all the observations assigned to node i. 

N 

logP(0/A,Ma)=   ^ log P[0 (in node   i), A,Ma] (4.7) 
i=l 

Similarly, each node score is the accumulated result of the individual contributions from 
each observation assigned to that node. 

1 e| 

logP[0(in node i)/A,Ma]=    V   {log P[OG)/A,Ma]} (4.8) 
C; - b, + 1     "7 

1        ' J=b, 

It is important that this score is normalized by the number of observations assigned to the 
node. Failing to do this will introduce a durational dependence into the scoring. This will have 
the effect of giving unequal weight to nodes with different numbers of observations assigned to 
them. However, a legitimate reason for calculating scores this way (per-observation) would exist 
if the observations were uncorrelated. 

The claim here is that they are correlated and the units that should be treated as uncorre- 
lated events are the nodes rather than the observations. 

4.1    USE OF ADDITIONAL FEATURES IN DISCRIMINANT ANALYSIS 

To enhance the discriminant analysis, it may be desirable to include additional features, 
either on a per-observation frame, or on a per-node basis. Discriminant training, as described 
above, is used to estimate means and variances of these new features for each input word, word 
model, and node. To incorporate a new per-observation feature we use the equation 

1 e' 
log P[g (in node i);A,Ma] =    T   {log P[0(j) A.MJ + logP[f(j) A.MJ}        (4.9) ei"bl+151 

where f(j) is the value of the feature at observation frame j. To include a per-node feature, that is 
a measurement such as node residency time which is computed once for each node, we use: 

N 
logP(OA,Ma)=   £   {logP[0 (in node i) a.Ma] + logP[f(i) A,Ma]} 4.10) 

i=l 

where here f(i) represents the value of the measured feature in node i. 
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4.2 THE DURATION MODEL 

The node residency time statistic has been used as a per-node feature to model the duration 
of each HMM state. It represents the only explicit inclusion of nodal duration in the discrimi- 
nant analysis, since per-observation features are normalized by averaging over each node. 

Two duration models were implemented. The first, known as absolute-duration, is based on 
the actual number of observations assigned to a node. The second, known as relative-duration, is 
based on the fraction of the entire word spent in any node. This relative-duration model, used 
previously in Reference 15, would be most effective under the assumption that, as the overall 
length of a word is increased or decreased, the individual acoustic events are increased or 
decreased proportionately. In either case, the values seen during recognition, for the duration sta- 
tistic, are simply included as an added feature, as described in the previous section with 
Equation (4.10). 

4.3 ESTIMATION PROBLEMS DUE TO LIMITED TRAINING DATA 

A large number of statistics are estimated when training the discriminant system described 
above. Many of these statistics are estimated from sample sets as small as five. The estimation 
error, resulting from these small sample sets, must be considered to avoid degraded performance. 

Variance estimates are much more sensitive to the effects of limited training data than are 
mean estimates. A possible solution is to eliminate the use of variance from the likelihood-ratio 
calculation. This could be used in situations where only a single model-parameter is being used in 
the discriminant system. In situations where multiple model-parameters are used, variance must 
at least be included to effectively weight the likelihood ratios obtained from different model- 
parameters. By calculating a variance taken from samples across all words, nodes, and models, a 
statistic derived from a much larger sample set is achieved. This scheme assumes that the varian- 
ces of the same model-parameter, given different hypotheses (word A or B), are identical. Equa- 
tion (4.11) shows the calculation involved in generating the likelihood ratio from a single obser- 
vation vector in node k, using the grand variance of each of the parameters: 

number of 
parameters 

log 

„n„    .    .   » •  -. parameters       . _ , . -,-,     r„. , , ,-> 
P[0(t)  A.MJ [0,(1) - MA.a.k.J2 " [OiW " ^B,a.k.i]2 j 

P[0(t)   B.MJ 

In this equation MA a k i is the estimated mean value of parameter i in node k, given that the 
input is word A being segmented by model A. MB.a.k.i 's ^ estimated mean value of parameter i 
in the node k, given that the input is word B, being segmented by model A. By assuming the dis- 
tributions to be Gaussian, this computation is made efficient. 
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The peformance of recognition systems often degrades when many features used for discrim- 
ination are added. Fundamentally, the adding of more information, such as the information a 
feature gives, should not degrade performance. The reason the contrary has been observed is 
primarily a result of small sample sets used to estimate statistics. A nasality detector can be a 
powerful feature. When discriminating between "pop" and "top" a nasality detector can be use- 
less. If infinite training data were available, a nasal feature of this sort would probably not con- 
tribute a great deal to a likelihood-ratio test. This is simply a result of the nasal discriminator 
not finding the feature it was meant to extract. Again, this presents no problem if the training 
data were infinite. The contribution of this discrimination in a likelihood-ratio sense would just 
be very small. Small sample sets from training do present a problem in this case. Since estimates 
such as variance in the nasal detector will be very poor in these situations, the decision boundar- 
ies produced by the discriminator can be altered from their true value enough to degrade the 
overall effectiveness of the system. Using such a feature in all discriminations could add enough 
statistical noise to cases where the feature is irrelevant to completely overwhelm any useful 
information obtained from other model-parameters in different nodes. 

In general, when only limited training data are available the addition of many features into a 
recognizer is usually accompanied by the addition of a great deal of statistical noise in the scor- 
ing. A solution to this problem is to use only those features that are appropriate in a discrimina- 
tion, given the words and nodes that are to be discriminated. 

Statistical T-testing is a method that addresses this problem.18-20 Estimates made from small 
sample sets can be poor. Two distinct sample sets may exhibit distinct estimates even though the 
underlying statistics for these two sets are identical. Given this situation, the two sets of estimates 
should not correspond to separate categories in a classifier. A classifier should have some mecha- 
nism for determining whether estimates correspond to identical underlying statistics. The statisti- 
cal T-test provides a mechanism for doing this. 

x - y /nxnv.(nx + nv - 2) 
T=      /— =  (4.12) 

(nx - 1) S2
X + (ny - 1) S2

y   7 nx + ny 

Equation (4.12) defines the parameter used in the T-test. x and y are the estimated means of 
a feature (in a given node, for a given word model) for words A and B. S2 and S2 are the esti- 
mated variances. nx and nv are the number of samples of x and y, respectively. This formula 
assumes that the variances of the underlying features are equal. This assumption was confirmed 
using F-ratio tests with the estimated variances during preliminary experiments. If this assump- 
tion had not been confirmed, a similar test from Satterthwaite21 which allows unequal variance 
could have been used. 

To use this test a value of T is compared to a threshold, so that if the absolute value of T is 
greater than the threshold value, the two statistics are accepted as having different means. If the 
absolute value of T is less than this, the two statistics are accepted as having identical means. If 
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the latter is the case, that particular model-parameter will be discarded from the scoring proce- 
dure for that node. It is suspected that a confusion-specific feature will have a small mean differ- 
ence relative to the variance in situations where the feature is not relevant. This will allow the 
statistical T-test to remove it from the scoring scheme, thus eliminating a major cause of statisti- 
cal noise and degraded performance. The threshold for all T-tests can be adjusted for various 
significance levels. For experiments, this threshold was adjusted so that the probability of a false 
acceptance is 0.05, where a false acceptance is defined as classifying estimates with identical 
underlying statistics as having different underlying statistics. 

4.4    DECISION SCHEMES 

Techniques described thus far in the discriminant system yield two final statistics from which 
a decision must be based. Those statistics are defined in Equations (4.5) and (4.6). Three schemes 
were tried in experiments for deciding on a selection. The first scheme was to simply take the dif- 
ference of these two statistics and choose B if the difference is >0, and A if the difference is <0. 
This scheme is depicted in Table 4-1. Another scheme was to only accept the second stage's result 
if the two statistics agree with each other. This is equivalent to the two statistics being of oppo- 
site sign. This only uses the second stage in cases where it has made a strong decision. In cases 
where the statistics do not agree the decision was deferred back to the original baseline score. 
This is depicted in Table 4-2. A problem with the above scheme is the possibility for a very large 
number of deferrals to occur. 

A third scheme is presented which tries to decrease the frequency of deferring. A threshold is 
decided based on the absolute value of the difference between the statistics. If this threshold is 
exceeded, at least one of the statistics must point strongly to a solution. Then, a decision is made 
based on their difference. If this threshold is not exceeded, then the decision is again deferred to 
the baseline system. This scheme has the advantage of not forcing a decision if both statistics are 
close to zero. This scheme is depicted in Table 4-3. 

TABLE 4-1 

Nondeferring Pairwise Decision 

La-l-b Decision 

>0 
<0 

A 

B 

Decision scheme does not allow deferring. Candidate 
with best overall score will be selected as the 
recognized word. 
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TABLE 4-2 

Deferring Pairwise Decision 

"-a Lb Decision 

>0 
>0 
<0 
<0 

>0 
<0 
>0 
<0 

defer 
A 
B 

defer 

Decision scheme allows for deferring. It only 
accepts the second-stage decision if La and 
Lb both point to the same word. 

TABLE 4-3 

Limited Deferring Pairwise Decision 

La-Lb Decision 

>T 
<-T 
else 

A 
B 

defer 

Decision scheme to limit number of deferrals. This 
will accept the second stage in some cases where 
the two scores point to different words. If one points 
strongly to a word, and the other points weakly to the 
other, the word could be accepted depending on 
threshold T. 
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Figures 4-2 and -3 show the scatter of points corresponding to these two scores; La and Lb 

measured for all test words in the data base. Figure 4-2 is a scatter diagram for all tokens where 
the baseline chose the correct word. Figure 4-3 is a scatter for all tokens that the baseline's 
second choice was correct. Both plots are scatters of the scores obtained from the second stage. 
The clustering into the upper left and lower right quadrants in these figures suggests that these 
scores will be useful in discriminating. 

4.5    WHEN DISCRIMINATION IS NEEDED 

An assumption made throughout this report is that the first-pass system is a good system 
with a reasonably low error rate. Given this assumption, the second-stage system should not be 
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Figure 4-2. Scarier of scores from the second si age. Horizontal axis represents the likelihood ratio from model A. 
Vertical axis represents the likelihood ratio from model B. Points to the top and left represent scores strongly 

favoring word A. Points to the right and bottom represent scores strongly favoring B. All points correspond to 
instances where A was the correct word and selected as the first choice by the baseline. Ninety-five percent of all 
points are found in the top left quadrant. 

25 



SCATTER  DIAGRAM:  B CORRECT 
200 

100 - 

< 
x 
m 
» 
5 

-100   - 

F 1 
log B/A 

log A/B 

1 ' 
-200 -100 0 

log A/B 

100 200 4 
in s 

Figure 4-3. Scalier from second stage, similar to Figure 4-2. A U points correspond to instances where B 
was the correct word chosen as the second best candidate from the baseline. Seventy-seven percent of all 
points are found in the bottom right quadrant. 

needed for all input words. It should only be used when the probability of the first pass produc- 
ing an error is great. A threshold is set that serves to identify two regions. They are: the region 
where first-stage errors are likely, and the region where these errors are not likely. This threshold 
is based on the difference between the top two scores from the first-pass system. 

Figure 4-4 shows how these regions can be identified. Virtually all first-stage errors result in 
the difference between the top two baseline scores being <1.5. The thresholds that were used in 
all experiments were 0.5 and 1.0. With the threshold set at 0.5 all but 79 words recognized incor- 
rectly by the first stage would be discriminated. With the threshold set at 1.0 all but 9 of these 
would be sent to the second stage. 
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Figure 4-4. Histogram of first difference of scores from baseline system. Horizontal axis plots the difference in 
log-probability scores for the top two candidates. The vertical axis plots the number of occurrences. The two lines 
correspond to histograms of correct responses and incorrect responses by the baseline. 

4.6    DISCRIMINANT DECISION FLOW 

The following serves as a description of exactly how an unknown word passed to the two- 
stage system is processed, and either successfully or unsuccessfully recognized. 

An unknown word is passed through the first-stage recognizer. If the correct word is not 
among the top N candidates, the system will have no chance of obtaining the proper solution. 
This case will result in an error. If the correct word is among the top N candidates, the correct 
result may be obtained. If the difference between the first two scores is greater than the set 
threshold, the baseline score will be used to select a word. If the difference is less than the 
threshold, unknown input is passed to the discriminant system. The discriminant system either 
selects one of the top two candidates as the recognized word or defers back to the baseline score. 
This scheme is depicted in Figure 4-5. 
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Figure 4-5.    Flow diagram of decision logic used in the iwo-srage recognizer. 
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5.    EXPERIMENTS AND RESULTS 

The following is essentially a chronological description of the most important experiments 
performed with various forms of the discriminant system. Outlined are descriptions of experi- 
ments which reduce the 7.7-percent error rate of the baseline system to 3.5 percent. Tables 5-1 
through 5-3 give a detailed look at the results of these experiments. Table 5-4 gives a more 
detailed look at four of the best systems. It describes the decision flow of the input words and 
reveals which circumstances result in the remaining errors. Figure 5-1 gives a graphic comparison 
of the HMM baseline system and the best two-stage system from experiment 10. As can be seen 
from this figure, discriminant analysis is effective for all stress conditions and talking styles. 

Experiment 0 — The Baseline System 

This experiment is designed primarily to evaluate the use and performance of the first-stage 
recognizer, as well as to collect segmentations from the Viterbi decoding. The recognizer was an 

TABLE 5-1 

Features Defining Each Experiment 

Modification 

Experiment 

0    1      2c0      2dur      3c0      Sdur    4both   4eith 5 6 7 8 9 10 

c1-c16 X    X X X X X X X 

cO XX                        X                        XX X X X X X X 

Abs_dur X                     X                        XXX X X X X X X 

T-test X X X X X 

Features X X X X 

Fixed Var X           X           X           X X X X X X X 

Threshold 1.0 X X X 

Threshold 0.5 XXX           X           X           X           X           X X X X 

Top 3 X X 

The "X's" corref 
experiment. The 
indicates which 

)ond to a particular modification being included with 
top row indicates which experiment is being defined 
modifications are used. 

a particular 
, The left column 
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TABLE 5-2 

E rror Breakdown for Each Speak er 

Experiment Speaker 

No. of 
Tokens 

gi 
1015 

g2 
1015 

g3 
1015 

nl 
1015 

n2        n3 
1015   1015 

bl 
1015 

b2 
1015 

b3 
1015 

Total 
9135 

Percent 

Experiment 0 193 56 74 51 97       49 89 64 34 707 7.74 

Experiment 1 168 58 68 47 110       61 86 49 34 681 7.44 

Experiment 2 
cO 199 73 92 85 90       39 87 66 37 768 8.41 

dur 167 56 69 42 112       32 80 53 34 645 7.06 

Experiment 3 
cO 174 53 64 51 84       35 86 46 28 621 6.80 

dur 137 66 61 31 95       37 73 49 33 582 6.37 

Experiment 4 
both 157 48 59 35 86       36 75 49 26 571 6,25 

either 146 50 58 25 84       31 69 45 31 539 5.90 

Experiment 5 116 37 42 29 81        13 50 28 24 420 4.60 

Experiment 6 116 36 42 26 82       14 49 25 23 413 4.52 

Experiment 7 118 34 44 25 74       16 45 27 23 406 4.40 

Experiment 8 111 35 40 27 72       16 39 28 22 390 4.27 

Experiment 9 93 35 42 25 70       12 33 18 23 351 3.84 

Experiment 10 74 37 34 19 75       10 35 16 25 325 3.56 

All errors are 1 
as well as ove 

broken down by experiment a 
rail percent error rate. 

nd speaker. Totals are given for eac i exper iment 
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TABLE 5-3 

Error Breakdown for Each Style/Condition 

Experiment 

No of 
Tokens 

Experiment 0 

Experiment 1 

Experiment 2 
cO 

dur 

Experiment 3 
cO 

dur 

Experiment 4 
both 

either 

Experiment 5 

Experiment 6 

Experiment 7 

Experiment 8 

Experiment 9 

Experiment 10 

Speaking Style 

slow norm fast   soft 
630    630   315   630 

ques   loud    clea 
315    315    315 

angr    50    70   lomb    trai 
630   630 630   630  3465 

28       18      16      87 

42       19      18     87 

34 

42 

26 

30 

22 

20 

18 

18 

17 

21 

28     27      91 

10      17     82 

28       18     20     72 

33       16      17      74 

16 

13 

8 

8 

7 

8 

7 

8 

12 70 

19 64 

6 56 

8 55 

6 55 

6 53 

6 48 

8 46 

20     25       11 

14       23       14 

19 29 

12 19 

14 28 

11 15 

12 

11 

11 

11 

9 

9 

7 

10 

17 

15 

13 

14 

15 

15 

12 

12 

9 

11 

10 

10 

7 

9 

4 

4 

3 

3 

2 

4 

134 45 58 65 200 

126 55 48 65 169 

144 54 61 76 196 

119 48 51 64 170 

127 45 44 64 151 

113 37 43 63 150 

117 41 47 59 147 

112 39 33 58 136 

101 25 26 50 98 

99 25 25 48 96 

98 23 26 47 99 

93 21 26 46 92 

83 21 26 40 82 

84 18 20 31 63 

Percent 

7,74 

7.44 

8.41 

7.06 

6.80 

6.37 

6.25 

5.90 

4.60 

4.52 

4.40 

4.27 

3.84 

3.56 

Errors are broken down by experiment and style/condition. Under each style heading is 
number which corresponds to the total number of test tokens. 
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TABLE 5-4 

Decision Flow Statistics for Selected Experiments 

Words 
Total number of test tokens 

Experiment 

7 8 9 10 

9135 9135 9135 9135 

Correctable 
Number of trials in which the correct word 
was among the top N candidates of the 
baseline 

8873 8873 8991 8991 

Sent to 2nd Stage 
Number of words which were passed to the 
second stage discriminator 

2044 4689 4799 4799 

Deferred 
Number of words sent to second stage 
which deferred back to the baseline score 

249 393 603 34 

Errors from Uncorr. 
Number of errors resulting from the correct 
choice not being among the top N 

262 262 144 144 

Errors from Deferring 
Number of errors resulting from words 
being deferred back to the baseline 

76 82 152 10 

Errors from Not Discrim 
Number of errors resulting from the word 
not even being passed to second stage 

38 5 8 8 

Errors from 2nd Stage 
Number of errors caused directly from the 
2nd stage 

30 41 47 163 

Total Errors 
Total number of errors in experiment 

406 390 351 325 
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Figure 5-1.    Comparison of baseline and hesi two-stage system. The two-stage discriminant system outperforms 
the baseltne system for all conditions. 

HMM system using 11 nodes with variance limiting imposed on the observation distributions. 
Multistyle training was used. The error rate was 7.7 percent. This corresponds to 707 errors out 
of 9135 test words. 

Experiment 1 — Multiple Model-Parameter Discrimination 
with Estimated Variances 

This was the first attempt at the two-stage discriminant system. The model-parameters used 
for discrimination were cepstral coefficients cO through cl6 and the absolute node residency time 
feature. Backtraces from experiment 0 were used for obtaining segmentations. The decision 
scheme allowed deferring, and was consistent with the method described in Table 4-2. The 
threshold for using the second stage was set at 0.5. In this experiment and most subsequent 
experiments, only the top two candidates were used for discrimination. The final error rate of 
this system did show some slight improvement. The total number of errors was reduced by 27. 
This corresponds to 680 errors or an error rate of 7.4 percent. At this point the system showed 
some promise, but significantly better performance seemed to be required to justify the use of the 
second stage. 
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Experiment 2 — Isolated Model-Parameter Discrimination 

The mediocre results of experiment 1 suggested that perhaps only a few of the model- 
parameters used for discrimination were in fact effective discriminators. This experiment was then 
performed to investigate the effects of using each of the model-parameters separately as discrimi- 
nators. The idea of not being able to defer back to the baseline was also felt worthy of investiga- 
tion. The experiment involved using only one model-parameter at a time in the second-stage 
system for discrimination. Each model-parameter was used separately on the entire data base. In 
addition to the model-parameters used in experiment 1, relative-residency time duration was also 
used. This experiment proved to be more encouraging. Results showing improved performance 
over the system in experiment 1 were found. These results are presented in Figure 5-2. The hol- 
low squares indicate points where deferring was not used, and the upside-down triangles indicate 

ISOLATED  MODEL-PARAMETER  DISCRIMINATION 
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Figure 5-2.    Detailed results of experiments 2, 3. and 4. Four sets of data are shown. They refer to both the use 
of estimated variance and fixed variance, and discrimination with and without deferrals. 
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points where deferring was used. The horizontal axis indicates the parameters used for discrimi- 
nation. In this experiment the relative duration (rel), and absolute duration (abs) models were 
both used, as well as cepstral coefficients cO through cl6. The solid horizontal line shows the 
error rate achieved by the baseline system. In all cases the results show that better performance is 
achieved by allowing the decision to be deferred. The two model-parameters showing the best 
results were the absolute-residency time parameter and cO. They resulted in 645 and 768 errors, 
respectively. This can be explained by the observation that these particular features tend to cap- 
ture the differences in confused words more so than the other features used. These features corre- 
late well with what is seen when studying a spectrogram. The overall energy and duration of par- 
ticular events are very important for word recognition. These two features bring out these 
characteristics. For every model-parameter used, an increase in error rate was found when the 
option of deferring to the baseline score was eliminated. For the two parameters mentioned 
above, the errors produced were 802 and 918, respectively, when deferring was not allowed. This 
was a bit surprising considering only a single model-parameter was used for any pass through the 
data base. 

Experiment 3 — Fixed Variance 

Since the results using just a single model-parameter showed improved performance over the 
complete model-parameter set, the suspicion that statistical noise might be overwhelming the 
recognizer became a genuine concern. This was thought to be a result of limited training data, 
resulting in small sample sets used for estimation. Poor estimates of this sort can alter the deci- 
sion boundaries of a discriminator. This can result in degraded performance by the system. The 
first solution to this attempted to repeat experiment 2 without using variance in the discrimina- 
tions. Since only a single parameter was to be used for any given pass through the data base, 
underlying variance differences between model-parameters did not present a problem. This experi- 
ment was aided by the discriminant calculations requiring no logarithms to be calculated. This 
enabled the experiment to run quickly. Results showed that the suspicions, mentioned above, 
were correct. These results are presented in Figure 5-2. The solid squares show points where de- 
ferring was used, and the diamonds show points where deferring was not used. Once again, the 
conclusion is that it is better to be able to defer the decision. Improved performance over the 
baseline was found with several of the parameters. The errors for the absolute-residency time 
parameter and cO dropped to 582 and 621 errors, respectively. This represents final error rates of 
6.4 and 6.8 percent. This is a significant improvement over the previous experiment. 

Experiment 4 — Limited Model-Parameter Discrimination 

The results of experiment 3 showed improvements when cO and absolute duration were 
separately used as discriminators. Since these are quite different parameters, it was suspected that 
the improvements seen from each of these were somewhat orthogonal. If this were the case, even 
further improvements could be seen by combining these parameters in the scoring scheme. Two 
approaches were investigated. For each word model, two scores resulted. These correspond to cO 

35 



and absolute duration. The first approach used the decision from the second stage only if both of 
these scores pointed to the same word. In the second approach if no clear decision resulted from 
a parameter and the other parameter showed a clear decision, then the second-stage choice would 
be used. Both of these approaches showed improvement. Figure 5-2 shows the complete results of 
this experiment. The first scheme (both) resulted in 571 errors, and the second (eith) resulted in 
539 errors. These are error rates of 6.3 and 5.9 percent. Table 5-5 gives the tabulated results of 
experiments 2, 3, and 4. 

Experiment 5 — Multimodel-Parameters with Fixed Variance 

Since combining parameters into the scoring procedure in a limited capacity showed some 
improvement in experiment 4, the use of all model-parameters was an approach that resurfaced. 
The use of these parameters was hoped to show significant improvement with the elimination of 
the problems associated with the poor variance estimates. 

To get around poor variance estimation, grand variance estimates were made for each of the 
model-parameters except the duration models. These estimates were generated from all training 
tokens for all words for a given speaker. Using these variance estimates has the effect of weight- 
ing the contributions of each of the model-parameters, as described in Section 4. This provided 
the single most significant improvement of all experiments conducted. This system produced a 
total of 420 errors. This is a 4.6-percent error rate. 

Experiment 6 — The Statistical T-Test 

This experiment was motivated by two ideas. The first was that instances of model- 
parameters in particular nodes could prove to contribute no significant information to the final 
discrimination score. The second idea was that a system that could eliminate many parameters 
from the discrimination could save computation time as well as making the inclusion of 
confusion-specific features much simpler. The T-statistic threshold set at a significance level of 
0.05 was found to eliminate more than 50 percent of all model-parameter discrimination instances 
from the scoring. 

The results of this run showed a slight improvement over the same system without the 
T-test. The total number of errors was 413 as compared to 420 without the T-test. The signifi- 
cance of this result is that almost half the parameters used for discrimination were discarded 
without degrading performance. The slight increase in performance suggests that using only 
parameters that are clearly distinct is a more robust scheme than using many parameters that 
might be only contributing noise to the final score. 

Experiment 7 — An Added Vector of Features 

To test the ability of the discriminant system to handle many new features, an experiment 
was performed using an additional vector of seventeen, per-node features. The features were 
chosen to make use of longer-term spectral changes in the speech signal. The mean value of all 
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TABLE 5-5 

Detailed Analysis of Experiments 2 and 3 

Parameter 

Estimated Variance Fixed Variance 

Defer No Defer Defer No Defer 

rel duration 1070 1251 832 1377 

abs duration 645 802 582 667 

cO 768 918 621 715 

cl 872 996 675 759 

c2 877 1054 694 783 

c3 859 1017 722 818 

c4 957 1132 803 877 

c5 854 1015 714 845 

c6 906 1066 745 811 

c7 979 1150 696 807 

c8 886 1048 798 922 

c9 891 1087 779 893 

clO 907 1110 796 910 

ell 894 1083 848 1010 

c12 1004 1186 917 1096 

c13 966 1135 856 1015 

c14 940 1147 838 1010 

c15 930 1117 843 974 

c16 970 1188 802 938 

both 642 571 

either 632 539 

All numbers correspond to errors out of 9135 test tokens. The 
first column indicates which parameter was used in the dis- 
criminations. The second and third columns used variance 
estimates for each occurrence of the discriminating parameter. 
The fourth and fifth columns used fixed variance estimates for 
each of the parameters. Schemes where the score could be 
deferred and could not be deferred were both used. 
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cepstral parameters was calculated for each node. The difference in these mean values from adja- 
cent nodes was used as the feature vector. Experiments 4 through 6 used 18 discriminant parame- 
ters. These parameters were cO through cl6 and a duration model. Seventeen more parameters 
were added in this experiment. A total of 35 parameters were thus used in this experiment. 
T-testing was included in the discriminations. 

The result showed a final error rate of 4.4 percent, totaling 406 errors. This was slightly less 
than the 413 errors in experiment 7. 

Experiment 8 — Threshold Modification 

At this point it was observed that the second-stage system proved to be correct 98 percent of 
the time it made the final decision. Because of this, it was felt that a net improvement might be 
seen if more words were initially passed to the second stage. This could be realized by widening 
the threshold that decides when a word goes to the second stage. The threshold was reset at 1.0. 
and the identical experiment was performed as experiment 7. The result again showed improve- 
ment, but no drastic improvement. The total errors were now 390 or 4.3 percent. It is important 
that there was no significant change in error rate for this experiment. A hard threshold exists in 
the system that must be estimated. Ideally, the performance of a system should not be sensitive 
to variations of such a threshold. With the limited experimentation done in this area, the system 
displays an insensitivity to variations in the discriminating threshold. 

Experiment 9 — Three-Way Discrimination 

Results from experiment 8 demonstrated that many of the remaining errors were attributable 
to the correct word not being among the baseline's top two candidates. More than two-thirds of 
all errors from experiment 8 were a result of this situation. This experiment looked at the top 
three candidates from the baseline system when discriminations were required. A total of three 
scores was now computed corresponding to each pairwise combination of the three words being 
discriminated. The decision scheme used was to accept the second-stage score only, if both com- 
parisons for any one word pointed to that word as the selection. Each pairwise decision was of 
the type found in Table 4-2. 

The error rate decreased substantially. The error total was 351 or 3.8 percent. The percent of 
these errors, attributed to the correct word not being in the top three candidates from the base- 
line, was now only 41 percent. 

Experiment 10 — A Modified Decision Scheme 

Even though experiment 9 produced significant improvements, a large fraction of all errors 
was a result of the second stage deferring back to the baseline score. Over 40 percent of these 
deferred words produced errors. To reduce this effect, a scheme was sought that would greatly 
reduce the frequency of the second stage deferring back to the baseline. 
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This experiment differed from the previous experiment only by the pairwise decision scheme 
used. In this experiment the pairwise scheme was of the form found in Table 4-1, instead of the 
scheme found in Table 4-2. 

The results of this experiment supported the ideas motivating it. The error total fell to 325, 
as compared to 351 in experiment 9, with a much smaller percent being attributable to deferrals. 
The error rate of this experiment was 3.5 percent. 

Experiment 11 — Baseline Parameter Comparison 

The following experiments were designed primarily to investigate various questions that arose 
during the period that the research was being conducted. Often an improvement in net perfor- 
mance was not expected from these experiments. Generally, the experiments try to isolate a par- 
ticular feature of the system to evaluate its validity as a part of the larger system. 

After obtaining many of the above-mentioned results, the question of why improvements 
were occurring was considered. If the reason was completely attributed to the added features 
such as duration, a better solution might just be to add these features into the baseline system. If 
the improvements came from new information that was obtained during the training procedure 
that the baseline does not use, the system would prove to be a significant improvement. 

Experiment 11 involved a system similar to the systems described in the last few experi- 
ments. The major difference was that only those parameters available to the baseline system were 
used as discriminating parameters. These were cl through cl6. No duration model was used. The 
system used fixed variance, selective deferring to the baseline, and T-testing. The final error rate 
was 4.8 percent or 436 errors out of 9135 tokens. This was exactly the result that was hoped for. 
The improvement, compared to the 7.7-percent error rate of the baseline, suggests that more 
information is being obtained from these parameters than was used with the baseline. The poorer 
performance, as compared to other systems described, reflects the power of the system in its abil- 
ity to incorporate added features into the scoring scheme. 

Experiment 12 — An Alternative to T-Testing 

In an experiment conducted by Rabiner and Wilpon,22 a measurement that was in some 
ways similar to a T-statistic was applied to weight the effects of various parameters used in a dis- 
crimination. The sample size used to obtain the estimates was not taken into account. 

VS2 + S2 (5.1) 

Equation (5.1) defines the weighting scheme. The log-likelihood ratio from a particular 
parameter is weighting by this value. With the statistical T-test this weight is either 0 or 1, 
depending on where the threshold lies. The T-test makes a binary decision rather than weighting. 
Rabiner and Wilpon's weighting scheme was installed on the current system and tested with the 
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system used in experiment 6, that resulted in a final error rate of 4.5 percent. Rabiner and 
Wilpon's scheme resulted in a total of 531 errors or 5.8 percent and, thus, degraded performance. 
Another approach to the focus-of-attention problem in discrimination is presented by Moore in 
Reference 23. 

Experiment 13 — Effects of T-Testing with Feature Vectors 

All experiments conducted after the initial T-testing run (experiment 6) included the use of 
T-testing in the discriminant system. An experiment was performed to measure how significant 
the T-testing was for systems using many added features. The experiment conducted was identical 
to experiment 8 with the T-testing mechanism removed. The final error rate was 4.4 percent or 
398 errors. This compares to the same system with the T-test that resulted in 390 errors. The 
conclusion to be drawn from this is the following: the use of fixed variance compensates well for 
the originally poor estimates used in experiment I. With the use of fixed variance, the likelihood 
ratio is a more reliable statistic to use in discrimination. 

This is brought out by the observation that removing nearly half the discriminators with the 
T-test does not significantly improve performance. The parameters sifted out, therefore, do not 
significantly degrade performance. The T-test is still a powerful tool. The mechanism for remov- 
ing parameters that may degrade performance is an important feature to a recognizer even 
though this facet was not seen in this case. The advantage of removing half of all computations 
for the second-stage system is obvious for any real-time application. 

Experiment 14 — The Correlated Observation Assumption 

This experiment was intended to demonstrate that the assumption of uncorrelated observa- 
tion frames degrades recognizer performance. The system used was identical to that of experi- 
ment 10 with one exception, the assumption was made that observation frames were uncorre- 
lated. The normalization, which formerly was done in the discriminant scoring to give nodes 
rather than observations equal weight, was eliminated. The error rate rose from 3.5 to 4.4 per- 
cent, showing that the assumption of independent observations is a poor one. 

Focus of Attention 

The T-test mechanism selectively discards parameters that do not contribute well to the 
discrimination. The parameters that are included should correspond to the parameters that intui- 
tively focus the attention of the discrimination to key parts of the words. The key parts should 
correspond to regions where a great discrepancy is seen between the two words. For certain con- 
fusions this idea was examined more closely. Statistics were kept defining those parameters in 
these confusions that were kept or discarded during discrimination. Figure 5-3 demonstrates that 
most of the parameters used in a discrimination between "go" and "oh" were focused toward the 
beginning of the word. The vertical axis plots the parameters that were or were not used in the 
discrimination. The horizontal axis plots node number, a value that is monotonic with time. The 
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Figure 5-3.    Cepsiral parameters used to discriminate the word models for "go" and "oh" are indicated 
with darkened regions. Most of the parameters used are concentrated toward the beginning nodes. 

dark rectangles in the figure show instances where both word models used a particular parameter 
at a particular node. Figure 5-4 demonstrates similar information from an "eight eighty" compar- 
ison. These plots agree with the intuition toward such discriminations. Words whose only acous- 
tic difference is found at the beginning or end of the word will best be discriminated by focusing 
on that part of the word. 

Figures 5-3 and -4 show parameters used by both word models for each node. The "go/oh" 
comparison is focused toward the beginning of the word, and the "eight/eighty" comparison is 
focused toward the end of the word. 
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Figure 5-4.    Similar to Figure 5-3 for the "eight" and "eighty" discrimination. Most of the parameters used 
are concentrated toward the end nodes. 
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6.    SUGGESTIONS FOR FUTURE RESEARCH 

This section describes some proposed modifications and extensions to the two-stage 
discriminant system. 

6.1 WAVEFORM FEATURES 

The discriminant system has demonstrated an ability to incorporate added features as dis- 
criminating parameters without degrading overall performance. In fact, the best system tested, 
experiment 10, included a total of 35 parameters used for discrimination. 

Including features that may only address a limited subset of overall confusions is a possible 
technique for achieving improved system performance. The hope of adding such features is that 
they always will be available for inclusion in the discriminant scoring. Individual features only 
would be included though for resolving confusions where those particular features were signifi- 
cant. For confusions where the features bear no real significance, the T-testing mechanism should 
effectively sift out those features. 

Possibilities for such features might include a nasality detector24 or waveform-based features, 
as described in Reference 25. The strength of this system lies in its ability to incorporate many 
features without any concern over how often it might prove useful or if the adding of another 
feature might lessen the significance of another parameter. 

6.2 SIFTING 

A method which removed weak discriminating statistics from a classifier was proposed by 
Lippmann.10 The T-testing algorithm described in some of the experiments is a primitive version 
of this idea. 

For the system demonstrating the best overall performance, mean estimates were sifted out 
of the computation by the T-test, and estimated variances were replaced by grand variances. An 
extension of this idea is to make comparisons with the estimated variances similar to the compar- 
isons of the estimated means. An F-ratio test can be used to make such comparisons. The thresh- 
old in this case is related to the ratio of the estimated variances. If the estimated variances are 
thought to be the same, the grand variance could be used in place of these estimates. Given 
enough training data, a similar test could be applied to covariance estimates between observation 
frames. The importance of this implementation is that the estimated moments that are thought to 
be significant are included in the classifier, and moments that are thought to be statistically 
insignificant are omitted. 

6.3 ADAPTATION 

The idea of having a recognition system that is constantly adapting itself by updating its 
models is a feature found to be difficult to incorporate in many systems. The complexity of the 
models should correspond to the amount of training data available. 
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When templates are first formed, quite often a small amount of training data are used. 
Using estimates of higher-order moments will probably degrade performance. After being used 
for some time an adaptive system will accumulate abundant training data, and higher-order esti- 
mates may then prove to be useful. Having adaptive models in a simple recognition system that 
might only use estimates of first-order moments will not completely exploit the increase in avail- 
able data. Such a system should adapt into a more complex system by not only updating existing 
estimates, but by including higher-order moments when enough data are available. 

The idea of sifting is an excellent vehicle for implementing such a system. When the training 
data are limited, perhaps only the means will pass the statistical significance tests (T-test, F-ratio 
test). As the amount of data increases the higher-order estimates will become more significant 
and will then be gradually incorporated into the scoring. 

Using test data to augment word model estimates will enable the system to continually 
update and adapt itself. By keeping track of these new data the system will automatically use 
higher-order moments of various estimated statistics whose sample sets may have been too small 
to be considered significant prior to testing. Such a system thus automatically adapts its 
complexity to the amount of data available. 

6.4    EXTENDED N-WAY DISCRIMINATION 

Experiments 9 and 10 demonstrated a significant improvement in overall system performance 
by looking at more than just the top two candidates from the baseline system. Further improve- 
ments might be seen by extending this idea to a general N-way discrimination. 

The most efficient way to handle this approach is to have the depth of the search be depen- 
dent on the degree to which the baseline scores were clustered. If just the top two scores are very 
close and the third is distant from these two, a two-way discrimination should be adequate. If 
the top four scores are all clustered together, a four-way discrimination might be needed. 

The only real limitation on such an implementation is computation time. The discriminant 
system used for the experiments described in Section 5 required about two percent of the compu- 
tation time required by the baseline system. This two percent corresponds to a two-way discrimi- 
nation. As the number of candidates N used in an N-way discrimination increases, the computa- 
tion required increases by a factor of N!/2(N - 2)!. Figure 6-1 shows how the computation time 
of the discriminator rises as a function of the number of candidates used. Surprisingly, as many 
as ten candidates can be discriminated before the computation time of the discrimination equals 
that of the baseline. 

There are many ways in which an N-way discrimination problem could be collapsed into an 
identification problem. N-way discrimination was used in this study because it allows for a much 
simpler implementation of sifting. Further research could examine identification procedures that 
include sifting. 

44 



m 
o 
oo 

N-WAY DISCRIMINATION COMPUTATION 
120 I            1            I            I            i            1            i           ' 

110 - 
/ 

100 - 
/ 

90 - / - 

80 - 
PERCENT OF  BASELINE                                      / 
COMPUTATION                                                      / 

- 

70 - / - 

60 - / - 

50 - / - 

40 - / - 

30 - / - 

20 - yS - 

10 - ^^ - 

0 --  1 1 1 1 1 1 1 L 
5 6 7 8 9 

N-WAY DISCRIMINATION 

10 11 

Figure 6-1.    Vertical axis shows the percent of the baseline computation that is necessary for an S-way 
discrimination. The horizontal axis plots .V. 

6.5    USE WITH LARGER SYSTEMS 

The greatest burden the discriminant system described thus far places on an implementation 
is memory storage. For the 35-word vocabulary, statistics must be kept for discriminating be- 
tween 595 different word pairs. 

An idea proposed earlier was to divide the full vocabulary into several subvocabularies. 
Statistics then would be kept only on word pairs of words in common subvocabularies. The 
thought behind this approach is that the first stage will usually confuse words in common subvo- 
cabularies. This is probably true to a certain extent; however, some common confusions will 
occur across various subvocabularies. 

A better solution would be to investigate nearest-neighbor scores during the training phase 
when all training tokens are recognized by the baseline. By only saving statistics on word pairs 
that appear as the top N candidates for any token of this training phase, the amount of storage 

can be greatly reduced. 
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Using two-way discrimination as the recognition scheme, and the statistic-saving scheme de- 
scribed above, only 10.4 percent of all word pairs were saved. This represents the statistics saved 
from the top two candidates. During recognition, discriminations were possible with the trimmed 
data 83.9 percent of the time a discrimination was called for. 

Using a statistic-saving scheme where all word pairs from the first three candidates during 
training are saved, the storage requirement is 23.7 percent of all possible word pairs. During 
recognition with these statistics saved, 94.5 percent of all attempted discriminations were possible. 

For the baseline HMM system with a 35-word vocabulary, 45 kbytes of storage is needed 
for statistics on the 16 cepstral parameters. For the 16 cepstral parameters and cO, the discrimi- 
nant system requires 1.3 Mbytes of storage. Using grand variances instead of the variance esti- 
mates halves this storage requirement. The use of T-testing drops the storage even further to 
333 kbytes. If the nearest-neighbor schemes for generating statistics are used, the requirement 
falls to 79 kbytes for the top three candidate statistics, and 35 kbytes for the top two candidate 
statistics. 
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7.    CONCLUSIONS 

The major conclusion to be drawn is that the two-stage discriminant system works well. The 
error rate was more than halved, resulting in a drop from 7.7 to 3.5 percent. Many references 
were made to other work which was done investigating ideas similar to those presented here. 
Four key differences can be found between the work presented in this report and the work 
referred to in other papers. The first is that the weighting scheme used in Rabiner and Wilpon26 

was shown to be less effective than the binary scheme used in experiment 12. The number of 
samples used in the estimates were not taken into account by Rabiner and Wilpon, and a linear 
instead of binary weight was used. The second key difference is that the effects of limited train- 
ing data were explicitly considered in this report. This effect has not been addressed previously in 
the manner described in this report. Fixed variance and T-testing were added to address this 
problem. This also allowed new feature parameters to be added without degrading performance. 
The third key difference is that observations were treated as correlated within nodes. Exper- 
iment 14 demonstrated that treating observations as uncorrelated degrades performance. The final 
difference is that the duration model used modeled node duration explicitly. This was based on 
the actual number of observations assigned to a node. Experiments 2, 3, and 4 demonstrated that 
this model performed better than the duration model based on relative duration used in 
Reference 27. 

The discriminant system, as it now stands, is a very good tool for performing experiments. 
Many features can be quickly and easily added without any structural change to the system. This 
was demonstrated by experiment 7 which doubled the number of discriminant parameters. 

Finally, the discriminant system can be reasonably implemented for real applications. The 
storage requirement for a vocabulary the size used in this work can be as low as 35 kbytes. The 
computation requirement is also less than half that of the baseline for discriminations using as 
many as the top seven candidates. 
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